
Prof. Ren-Song Tsay October 22, 2018

Chapter 7: Sorting 1

2018/10/20 © Ren-Song Tsay, NTHU, Taiwan 84

7.10

External
Sorting

External Sort

 When the lists are too large to be loaded
into internal memory completely

◦ The list could reside on a disk

 The external sorting operations

◦ Read partial records

◦ Perform the sorting

◦ Write the result back to disk

 “Block”

◦ The unit of data that is read/written at one
time

85

7.10

External Sort Algorithm

 Insertion sort, Quick sort, Heap sort…..NO
 Merge sort…………………………….YES

◦ Segments (blocks, runs) of input lists sorted using an

internal sort

◦ Sublists could be sorted independently and merged

later

◦ The runs generated in phase one are merged

together following the merge-tree pattern

◦ During the merging, only the leading records of the

two runs needed to be loaded in memory

86

Prof. Ren-Song Tsay October 22, 2018

Chapter 7: Sorting 2

Runs & Merge Tree

87

run 1 run 2 run 3 run 4 run 5 run 6

Merge tree

Example: Problem

 Internal memory: 750 records.

 List to be sorted: 4500 records.

 Block size: 250 records.

88

R1 R2 R18

List in Disk

Internal Memory

Example: Merge Pass 1

 To merge 𝑅𝑖 and 𝑅𝑖+1:
◦ The blocks of 𝑅𝑖 and 𝑅𝑖+1 are read into input buffers

◦ The merged data is written to output buffer

◦ Output buffer full ⇒ write onto disk

◦ Input buffer empty ⇒ read from the new block

89

List in Disk

Internal Memory

Prof. Ren-Song Tsay October 22, 2018

Chapter 7: Sorting 3

Example: Merge Pass 2

 To merge 𝑅𝑖 and 𝑅𝑗 :
◦ The blocks of 𝑅𝑖 and 𝑅𝑗 are read into input buffers

◦ The merged data is written to output buffer

◦ Output buffer full ⇒ write onto disk

◦ Input buffer empty ⇒ read from the new block

90

List in Disk

Internal Memory

Optimal Merging of Runs

 Runs with different sizes.

 Different merge sequence may result in

different runtime.

93

7.10.5

15

5

42

154 52

External nodes

(Run and its size)

Internal nodes

(Merging)

Runtime Evaluation

Merge tree A
𝐶𝑜𝑠𝑡
= (2 + 4) + (2 + 4 + 5) + (2
+ 4 + 5 + 15)
= 2 ∗ 3 + 4 ∗ 3 + 5 ∗ 2 + 15 ∗ 1
= 43

Merge tree B
𝐶𝑜𝑠𝑡
= 2 ∗ 2 + 4 ∗ 2 + 5 ∗ 2
+ 15 ∗ 2 = 52

94

15

5

42

154 52

Prof. Ren-Song Tsay October 22, 2018

Chapter 7: Sorting 4

Weighted External Path Length

 The total number of merge steps is equal

to:

෍

𝑖=1

𝑛

𝑠𝑖𝑑𝑖

 Where 𝑠𝑖 is the size of Run 𝑖 and 𝑑𝑖 is

the distance from the node to root.

 How to build a merge tree such that

the total cost is minimized?

95

Sort by Block Size

 Sort runs using its size.

 Take the two runs with least sizes and

combine them into a tree.

 Repeat the process until we obtain one

tree.

96

42 155

15542

6

542 15

11

15542

26

Similar to Message Encoding

 Given a set of messages {𝑀1 , 𝑀2 , … ,𝑀𝑖}

 How do we encode each 𝑀𝑖 using a

binary code such that the total number of

message bits is minimum?

97

Encode 1 Encode 2 Encode 3

𝑀1 0 0001 0001

𝑀2 1 0010 1

𝑀3 10 0100 01

𝑀4 11 1000 001

Prof. Ren-Song Tsay October 22, 2018

Chapter 7: Sorting 5

Huffman Code

 Using a binary tree, called decode tree

to encode messages.

99

7.10.5

F7.28

M4

M3

M2M1

0 1

0

0

1

1

Decode tree Huffman Code

𝑀1 000

𝑀2 001

𝑀3 01

𝑀4 1

Decoding Cost

 Cost of decoding a code word is proportional to
the number of bits of the word.

◦ Decoding a code word contain 2 ∗ 𝑀1 and 1 ∗ 𝑀4

requires process 2 ∗ 3 + 1 = 7 bits.

 Assume the message 𝑀𝑖 with encoded bit length
𝑑𝑖, occurring frequency is 𝑠𝑖, then the total cost of
the code word is:

෍

𝑖=1

𝑛

𝑠𝑖𝑑𝑖

 How do we construct a decode tree such
that the decoding cost is minimized?

100

Optimal Merge Tree

 Follow Huffman Code Method
 Sort the message according to 𝑠𝑖

 Take two messages with the least 𝒔𝒊 and
combine them into a tree (a new message)

 Repeat the process until we obtain one
tree.

101

𝑀1 𝑀3 𝑀2 𝑀4
2 4 5 15

𝑀3𝑀1 𝑀3𝑀1 𝑀2 M3M1 M2 M4

Prof. Ren-Song Tsay October 22, 2018

Chapter 7: Sorting 6

Self-Study Topics

 7.8 List and Table Sorts

103

